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MINIMUM CROSS-ENTROPY PATTERN
CLASSIFICATION AND CLUSTER ANALYSIS

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

Let , denote a "feature vector" of measurements F. (i - 0,1,...,M) that1

are made on a system for which the individual measurements can be expressed as

expected values with respect to some unknown underlying probability density

function qI(Z):

dX f i()q' (x) = F. 
1

where the fi are known functions and x is a finite dimensional vector. This

A (t)
paper considers the problem of classifying F by identifying the vector F

that "best represents" F according to the "nearest-neighbor rule"

, (t) (a)
D(F,F ) = min D(F, (  ) , (2)

s6A

where D is a distortion measure and where F seAl is a discrete or
A(s)

continuous set of pre-defined vectors. The vectors F might be called

characteristic feature vectors, codewords, cluster centers, models,

reproductions, etc. An example of such a problem occurs in speech analysis,

where the measurements F. are estimates of autocorrelation function values,1

which can be expressed as expectations with respect to some underlying

distribution [1], [2). In speech recognition applications, the identity of

A (s)
the best codeword F could be used to identify the speech sound or perhaps

the speaker; in speech transmission applications, the identity of the best

codeword can be transmitted as part of a narrow bandwidth encoding of the

speech [21,3].

Most of the literature on nearest-neighbor classification deals only with

Euclidean or other metric distortion measures [41,151. In contrast, we

consider an information-theoretic distortion measure that is not a metric, but

that nevertheless leads to a classification algorithm that is optimal in a

Manuscript submitted February 21, 1980.
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well-defined sense and is also computationally attractive. Furthermore, the

distortion measure results in a simple method of computing cluster centroids.

Our approach exploits properties of the cross-entropy between any two

probability density functions q,p, defined by

H[q,p] - f(L q(lt)log(q(x)/p(x)) , (3)

if the measure induced by q is absolutely continuous with respect to that

induced by p, and Hlq,p] 5ao otherwise [61,[7]. In particular, our approach

is based on cross-entropy having unique properties as an information measure

(61-(81 and on cross-entropy minimization having unique properties as an

inference procedure 19). The approach can be viewed as a refinement of a

general classification method due to Kullback [6, p. 83]. The refinement

exploits special properties of cross-entropy that hold when the probability

densities involved happen to be minimum cross-entropy densitites 1101,111).

The approach is a generalization of speech coding by vector quantization

[21,[31.

Section II reviews relevant properties of cross-entropy and cross-entropy

minimization and Section III presents the minimum cross-entropy solution to

the classification problem. Section IV considers the cluster analysis problem

of choosing appropriate feature vectors F An example concerning

narrow-band speech transmission is disscussed in Section V, and a general

discussion follows in Section VI.

I. THEORETICAL BACKGROUND

Suppose you have a prior estimate p of the unknown probability density

q (t), you obtain new information about q+ in the form of expected value

constraints (1), and you need to choose a posterior estimate q that is in some

sense the best estimate of qi given what you know. Which one should you

2
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choose? The principle of minimum cross-entropy provides a general solution to

this inference problem [9). The principle states that, of all the

distributions that satisfy the constraints, you should choose the posterior q

with the least cross-entropy (3) with respect to the prior p. As a general

method of statistical inference, cross-entropy minimization was first

introduced by Kullback 161. The name cross-entropy is due to Good [12].

Other names include expected weight of evidence [13, p. 72], directed

divergence [6, p. 71, discrimination information [6, p. 37], and the entropy

of one distribution relative to another [7, p. 191. The principle of maximum

entropy [141,[151 is a special case of cross-entropy minimization under

appropriate conditions [21,[9].

A. Minimum Cross-Entropy Probability Densities

Given a positive prior probability density p, if there exists a posterior

that minimizes the cross-entropy (3) and satisfies the constraints (1) and

fdx q(x) -1, (4)

then it has the form

q(x) - p(xs) exp - PkfkW (5)

k-O

with the possible exception of a set of points on which the constraints imply

that q vanishes [6, p. 381,[101. In (5), Ak and A are Lagrangian multipliers

whose values are determined by the constraints (1) and (4). Conversely, if

one can find values for A and A in (5) such that the constraints (1) and

(4) are satisfied, then the solution exists and is given by (5) [101.

Conditions for the existence of solutions are discussed by Csiszar [10). The

cross-entropy at the minimum can be expressed in terms of the Lagrangian

t



multipliers and the Fk as follows ([6, p. 38], [11]):

MHMq,p] = - A - IkFk 
(6)

k-0

It is necessary to choose A and the k so that the constraints are

satisfied. In the presence of the constraint (4), one may rewrite the

remaining constraints (1) in the form

d(f () - F =)q(x) - 0 (7)

Now, if one finds values for the Pk such that

(f.(x) - Fi)p(x) exp fk-(a 0 U ( =0...,M), (8)
k-0

holds, (7) will be satisfied, and (4) can then be satisfied by setting

-log .~)ep (9)

k-0

If the integral in (9) can be performed, one can sometimes find values for

the K from the relations

F_ F
kk

It unfortunately is usually impossible to solve this or (8) for the At

explicitly, in order to obtain a closed-form solution expressed directly in

terms of the known expected values Fk rather than in terms of the Lagrangian

multipliers. Computational methods for finding approximate solutions are,

however, available ([111, [161).

B. Justification and Properties of Cross-Entropy Minimization

In this Section, we discuss justifications for the principle of minimum

4
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cross-entropy, and we summarize three important properties of cross-entropy

minimization that lead to the classification method described in Section III.

For general statements and proofs of these and other properties, see [111.

In what sense does cross-entropy minimization yield the best estimate of

q To answer this question, it is useful and convenient to view

cross-entropy minimization as one implementation of an abstract information

operator 0 that takes two arguments -- a prior and new information -- anid

yields a posterior. Thus, we write the posterior q as q -p*I, where I stands

for the known constraints (1) on expected'values plus the usual normalization

constraint (4). Recent work has shown that, if the operator o is required to

satisfy certain axioms of consistent inference, and if o is implemented by

means of functional minimization, then the principle of minimum cross-entropy

follows necessarily (91. Informally, the axioms of * may be phrased as

f ol lovis:

1) Uniqueness. The results of taking new information into account should

be unique.

2) Invariance. It shouldn't matter in which coordinate system one accounts

for new information.

3) System independence. It shouldn't matter whether one accounts for

independent information about independent systems separately in terms

of different probability densities or together in terms of a joint

density.

4) Subset Independence. It shouldn't matter whether one accounts for

information about an independent subset of system states in terms of a

separate conditional density or in terms of the full system density.

For the formal statements, see [91. In terms of these axioms, the principle

of cross-entropy minimization is correct in the following sense: Given a



prior probability density and new information in the form of constraints on

expected values, there is only one posterior density satisfying these

constraints that can be chosen in a manner that satisfies the axioms; this

unique posterior can be obtained by minimizing cross-entropy.

An additional interpretation of the sense in which q - pol is the best

estimate of qt rests on cross-entropy's well-known 16) and unique [81

properties as an information measure. For example, cross-entropy satisfies

R[q,p]J 0 , (10)

with equality only if p - q almost everywhere. Also, if the space on which p

and q are defined is the product of two sample spaces X1 and

X2, and if p and q have the product form

P(X ,X2 ) = pl(xl)p 2 (x2 )

and

q(xlx 2) = qI(xI)q2(x2

then

H[q,p] =H[qlq2 ,PlP21 H[ql,p1] + H[q 2,p2]

holds. Informally speaking, H[q,p] is a measure of the "information

divergence" or "information disimilarity" between q and p. In these terms,

one can interpret the principle of minimum cross-entropy as follows: Since

q - po! minimizes H[q,p], the posterior hypothesis for qt is as close as

possible in an information-measure sense to the prior hypothesis while at the

same time satisfying the new constraints I. Owing to cross-entropy's

properties as an information measure, H[q,p] has been proposed as a measure of

the distortion introduced if p is used instead of q [17], even though H does

not have properties of a metric. (For example, it does not satisfy a general

triangle inequality). In the context of cross-entropy minimization, however,

6

4 l I I



there is a much stronger justification for using cross-entropy as a distortion

measure. In particular, the following property holds (see (10], [111):

Property A (triangle equality). Let I be the constraints (1) and let p be

any prior. Then

Htq",p] = H[q*,p-I] + H[p*I,p] . (11)

Thus, the minimum cross-entropy posterior estimate of q1 is not only logically

consistent, but also closer to qt, in the cross-entropy sense, than is the

prior p. Moreover, the difference H[qt,p]-H[qt,poI] is exactly the cross-

entropy H[poI,p] between the posterior and the prior. Hence, H[p-I,p] can be

interpreted as the amount of information provided by the constraints I that is

not inherent in p. Stated differently, H[peI,p] is the amount of additional

distortion introduced if p is used instead of pal. Since, for any density r

there exist constraints Ir such that r p.r for any prior p, Hfrp] is

in general the amount of information needed to determine r when given p, or

the amount of additional distortion introduced if r is used instead of p [II].

Additional justification for using cross-entropy as a distortion measure

in the context of cross-entropy minimization is provided by the following

property:

Property B (expected value matching): Let I(F) be the constraints (1) for

a fixed set of functions fk and let q - pa1 be the result of taking this

information into account. Then, for an arbitrary fixed density q*, the

crosh entropy H[q*,q] - H[q*,p-I] has its minimum value when the

constraints (1) satisfy

Fk a F k 3dx q*(x)fk(k).

This is a generalization of a property of orthogonal polynomials [18, p. 121

7



that, in the case of speech analysis, is called the "correlation matching

property" (19, Ch. 2]. Property B states that, for a density q of the general

form (5), Hfq*,q] is smallest when the expectations of q match those of q*.

In particular, it follows that q - p.1 is not only the density that minimizes

H[q,p], as already discussed, but also is the density of the form (5) that

minimizes H[qt,q]! Hence p.1 is not only closer to qt than is p -- as shown

by the convenient form (11) -- but it is the closest possible density of the

form (5).

Another property of cross-entropy minimization that we shall need in

Section III is the following:

Property C. Let 11 and 12 stand respectively for the constraints

Id x f ( E) -t(Z) - F l)

and

(- F(2)

which involve the same set of functions f£i i O,...,M. Then

(p.1I)&1 2  - p0l 2  (12)

and M
r (1)( (1) - (2)) (3

H[q 2 'P] H[q 2'ql] + H[q,PJ + r (Fr r (13)

rinO

hold, where q, p.Il, q2 - PeI2, and the PO) are the

Lagrangian multipliers associated with q, - pell.

Suppose that q and qt are the system probability densities at two

different times, and suppose that qor estimate of are considered to

be reasonable prior estimates of q . That is, pe1I is considered to be a

6



reasonable prior estimate of q2 . Property C states that, when 12 is

determined by expectations of the same functions as I, the results of

taking II into account are completely wiped out by subsequently taking 12

into account.

III. CLASSIFICATION METHOD

We now consider the problem outlined in Section I. Let I denote the

A
constraints (1) associated with the feature vector l, and let I denote

analogous constraints associated with each of the pre-defined codewords

A(s

4! i f(3X)4(x) - 'PB (14)
t

Suppose that p is an estimate of q? that is available prior to learning F.

Then the best posterior estimate of q+ is

qi=poI , (25)
q poi b the minimum

in the sense discussed in Section II. Now, let t be

cross-entropy estimates of q that would apply if the current feature vector

were equal to the codeword As discussed in Section II, H[q,saI is

the amount of information-theoretic distortion introduced if q is represented

by q" It is therefore reasonable to define the distortion measure between

Fand F as

,) , (16)

a ^PI . The nearest neighbor classification rule (2)where q a p*I and qs 0 °s

then becomes: find t such that

9
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HNq,qtJ " min H[q,A) (17)
sA

if the minimum exists (e.g., if A is finite). Now, from (11), we have

-~ q ,q a q* +nrq*,q , (18)
A O

where q* - qs I is the estimate of qt that results if s instead of p is

used in (15) as the prior estimate of But

q * = I - (POs)91 = poI - q (19)

follows from (12), so that (18) becomes

Htq tpq  H[q+'q] + H[q,'] " (20)

Hrq t , SJ is the amount of information needed to determine q given the

codeword qa , or the amount of distortion introduced when qt is represented

by A " Equation (20) states that the total distortion H[q'A I is the sum

of the distortion introduced when q is represented by the best posterior

estimate q - poI plus the distortion introduced when q is represented by the

codeword qs Since q minimizes H[qIq] in the sense defined in Property B,

(20) shows that the classification rule (17) is optimal in the sense of

minimizing the total distortion H[qt,]. The rule (17) is equivalent to

the minimum discrimination classification method of Kullback [6, p. 83) since

q - q8*1 by (19), which shows that the Kullback method is optimal in a sense

that has not been appreciated previously. Notice that when q is in the
_A

codeword set -- q q 8 for some s6A -- the rule (17) just selects q, the

best posterior estimate of q

Minimizing H[q,t]I identifies the associated codeword'i(t) . Now, the

quantity H[q,] = H[4to I,Jt is the amount of information provided by I

10



that was not already inherent in ^  We can therefore restate the solutiont"

in terms of the problem as originally posed -- choosing the codeword F

that "best represents" the feature vector f - in the following way: Choose

the codeword F such that the feature vector F provides the least

additional information beyond what F provides.

We now consider the computational requirements of the classification

method. Ac this point we specialize to the case in which there is a discrete

set of n codewords F Given an input feature vector F of M+1

measurements Fi , the classification procedure may be summarized as follows:

a) compute q w paI, where I represents the constraints (1);

A A

b) compute Hfq,j] (j - 1,...,n), where qj  pI j and I.

represents the constraints (14), and find a value j such that

H[q,jj. H[q,qil , for i 0 j.

Now, owing to property C, it turns out that the first step is unnecessary: this

"two-step" procedure reduces to a single step. From (13), it follows that

X

H~,qj H~q,p) - H[4j,p] - I e (F k - F k
k-0

or
M

H(q,Aj]j li[q,p] + ^( ) + > ( (21)

k-0

holds, where we have substituted for E[qj,p) by means of (6). In (21) the

7k are components of the the input feature vector P and the 1(J) and

are Lagrangian multipliers associated with 4i Pali. Since the

I are known ahead of time, these multipliers can be computed ahead of time

Ill, Appendix A],1161. Now the quantity H[q,p] is a constant for any feature

vector , so that the closest codeword I can be determined by finding the

I1
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smallest of the quantities

M

.+ k , (22)

k=O

which does not involve having to compute q - p.1. Computing each A.

requires M+l multiplications and additions involving M+2 pre-stored

multipliers and the M+l elements of the input vector F. If there are n

possible codewords, the total requirement is n(M+1) multiplications and

additions, storage for n(M+2) Lagrangian multipliers, and approximately n

comparisons (to find the smallest A .). One can also trade about n(M+l)/2.3

of the multiplications for additions [20]. Since the A. can be computed

independently, concurrent computation is possible.

These results are a generalization of the method of speech coding by

vector quantization 13],[2), which exploits a special case of (20) that was

found to hold for a speech spectral distortion measure due to Itakura and

Saito [211,[22]. Under suitable assumptions, the Itakura-Saito distortion

measure can be shown to be a special case of assymptotic cross-entropy rate

[21,[221. In Section V, we show how speech coding by vector quantization

follows as a special case from (22).

IV. COMPUTATION OF CLUSTER CENTROIDS

Suppose that a cluster of measurement vectors F (i )  - 19...9N, is to

be represented in the classification proceAure of Section III by a single,

"centroid" codeword P. For example, the F(i) might result from measurements
^ A

on N members of the class to be represented by Z. How should one determine P

from the F(i)?

The selection of centroids is a key facet of cluster analysis techniques

such as the k-means technique [51 or the ISODATA technique [23], and it is

12
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also important in the design of vector quantizers [24]. When the distortion

measure is the Euclidean distance, centroids are simply Euclidean centers of

gravity. For more general distortion measures as in (16), a natural

generalization of the Euclidean centroid [24] of a collection IF(); i-...N
A

is the vector F minimizing the average distortion,

N N

Dc(F) = I D(F(i) ,) I H[qi, J , (23)
i=1 l

where qi = p*ti and q = pol. Here, I.i and I stand for expected value

( i) A
constraints of the form (1) corresponding respectively to and F.

Perhaps surprisingly, the centroid for this apparantly complicated

non-Euclidean distortion measure can be readily evaluated because of the

special properties of Section II. In fact, we show below that the minimum of

A 
A

D (F) is achieved simply by the components of F each being the arithmetic

mean of the components of the F

Since Ii and I involve the same constraint functions f., Property C

applies. Eq. (13) yields

MH[qi,q] = H[qi,p] - H[q,p1 - X_ r(Fr - Fi)

r0O

A

where the r are Lagrangian multipliers associated with q = psI. It follows

that (23) becomes

N M

c ( HqiP]- H[q,p]- Fr (24)Sc N) X Y r(r -r (4

ilr-

where the Fr are components of the mean constraints

N .

F .(F (25)

i-i

Now, let q = pOY, where Y represents the mean constraints E. Then (13) yields

13



H q , q] H~q,pJ - Hf(q,pJ - r (Fr(r -r

r-O

By combining this with (24), we obtain

N
D(F) = H[q,A, - H[q,p] + - )H~q.,p((F) H qq N(26)

i-i
A

Since Dc(F) depends on F only through the first term, minimizing Dc() is

equivalent to minimizing H[q, J. This minimum occurs when q q (see (10),

A A

which in turn means that the optimal centroid F is F F, where F is given by

(25). Hence the components of the cluster centroid F are just the arithmetic

means of the components of the cluster elements 
F(J)

V. EXAMPLE --- SPEECH CODING BY VECTOR QUANTIZATION

Speech coding by vector quantization is a recently developed

narrow-bandwidth speech coding technique based on Linear Prediction Coding

(LPC) 131,[2]. Based on estimates of the sample autocorrelation function that

are measured in each frame, the speech in each frame is coded in terms of the

identity of a prestored set of LPC parameters called a codeword. The LPC

paramaters used are the inverse filter gain a2 and sample coefficients ai,

i = 0,...,M, with

s0 = 1 . (27)

These parameters characterize a filter that is used in synthesizing the speech

after decoding. The nearest-neighbor distortion rule used in coding the

speech selects in each frame the codeword that has the smallest Itakura-Saito

distortion [211,[221 with respect to the current frame of speech. In

particular ([21,[3]), one finds the codeword with parameters that minimize the

14
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expression

r(O)r (0) + 2 r (s)r (s)I + log( 2) (28)rx a a

where

M-s

ra(s) = = (29)

0 otherwise

and where the r (s) are measurements that estimate the autocorrelation
x

function of the speech in the current frame for lags a - O,1,...,M.

For convenience, we omit indexing c and the a. with the codebook parameter j1

over which (28) is minimized.

Gray, et al. (21 have shown that the minimization expression (28) can be

derived by means of cross-entropy minimization. Here, we shall show that (28)

is a special case of the general expression (22). In doing so, we shall use

some results from [2]. In [2], the derivation is conducted in terms of

codebook probability densities *(y), where y , YO'"'Yk-I is a vector of

k time domain signal samples. In particular, each codebook entry corresponds

to an autogregressive model of the form

Yi= u i -

M

Yn - a jYn-j + Oen

where the u. are the initial conditions for the filter, where the1

Yn are time-domain signal samples, and where en is a zero-mean

unit-variance sequence of independent Gaussian random variables. The

vector y can be expressed in the form y - A -1( ir + v), where is a banded,

15



triangular matrix whose components are the inverse filter sample coefficients,

(ijA) - , (30)

0 otherwise

and where

i n<M
- a .u.

n-j

(v) j-n-M (31)

0, n >,M

Each codebook density 4(y) is Gaussian,

(y) = (21)k/2 (det -2 ) 1 /2exp[- - tR2I(Z - La)/21 (32)

with mean

m lE(y) A-v (33)

and covariance

R = E((y-E(y))(y-E(y))t )

= a2 (AtA)-l , (34)

where E stands for expected value and where t indicates a transpose operation.

For convenience, we omit the voicing parameter that is part of the analysis in

12). Our results, however, are unaffected by this omission.

In [21, the expression (28) is obtained by using constraints

E(yiy j ) - rx(li-ji) , Ii-jl 4H (35)

E(y) - 0 (36)

for each speech frame, applying Kullback's 'classification procedure (6, p. 831

to select a codebook entry q, and taking the k4s limit of the per-symbol

cross-entropy so that the classification is based on the stable, non-transient

behavior of the autoregressive models.

16

- -- -- w'" "- ... ! . .... --



The codebook densities (32) were derived in 121 directly from arguments

concerning the speech reproduction model class. For our purpose here --

applying the results of Section III -- we need to express the codebook

densities as minimum cross-entropy densities q pol, for some fixed prior p

and codebook-dependent constraints t. This is accomplished ([2],[6],[10],[11j)

by the prior

p(y) = (2i)-k/2 exp[-yty/21  , (37)

where I is the identity matrix, and by the constraints

E(yiyj) = (12 + 9t )ij Ji-ji 4M (38)

E(y) - . (39)

We can now make the connection with the results of Section III. There we

showed that the best codeword is determined by the minimum of the quantities

(22),

= + k Fk (40)

which we have rewritten here without the codebook index j. In terms of the

foregoing, the measurements Fk are given by the right hand sides of

(35)-(36), the Ok are the Lagrangian multipliers in q - po4 that correspond

A

to the constraints (38)-(39), and A is the normalization multiplier. The

Lagrangian multipliers can be identified in (32) by noting that A must have

the general form (5). After factoring out the prior (37), it is easy to see

that is given by

exp[-.] - (det 2)- 1/2exp[-..t 1/21 (41)

and that the terms yiyj in the exponential in (32) have the factors

(1/2)(32 - ;)ij which are therefore the Lagrangian multipliers

corresponding to the constraints (38). We do not need the multipliers

corresponding to (39) since, owing to (36)t they do not contribute to the sun

17
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XkN kFk in (40). Eq. (40) therefore becomes

+ 1
2 Z. x 2 '-11

Ii-iI: - )

1k+ r r(Ii-jl )(R21)ij x r(0) (42)

The last term cannot affect the minimization since it doesn't depend on the

codebook entry; we therefore drop it. From (39), we have

A I t.-I 1
"-2 a2 E + ilog det j2

1it-i 1 ,2 (t )-1
1 R2 m + -log detO(AA)
2- -2' 2

I t.-I k 2 1 1 t
2= - 2 1 + ilog a' log det A + ilog detA

1 t -I k 2
-2 - + ilog r

where we have used (34) and, in the last step, the fact that A is triangular

with A a0 
f 1 from (30) and (27). Since minimizing A in (42) is

equivalent to minimizing 20/k, it follows that the beat codeword can be found

by minimizing

r = 1ltRI m  + log( 2 ) + . (i-jj)( (43)

V- -2 k + x rx - 2 (

ji-jI.-4 M

Now, the first term in (43) evaluates to (v v)/k 2 by means of (33)-(34).

Since v has a fixed number of M+1 non-zero terms (see (31)), it follows that

this term goes to zero as k-V.o

Expanding (34) by means of (30) leads to

min(i+M,j+M,k-1)
42 fiJ 12 aa~ x n-ian-j (44)

Since is symmetric, it suffices to consider the case i>j, for which

12
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(44) becomes

(R I)i I _ minT ,k-l)a a
( 2 j T an-i n-j

nfi

min(M-4-jj,k-l-i)--I
2 a aa -

-0

Provided that

min(ij) < k-l-M (45)

holds,

(Ii - 2 r,( li-jI) M

follows from (29). Equation (43) is therefore equivalent to

r log(o2 ) + rx(i-jt)ra(Ii-il
k a

Ii-iI,%M

H

= log(o 2 ) + 12 r x(O)ra(O) + 2 . rx(S)ra(S , (46)

which is the same as (22). In deriving the last term of (46), we have ignored

corrections necessary for proper evaluation of the sum at the matrix

boundaries. However, these corrections involve only (+1) 2 terms (see (45))

and therefore become negligible as k-oo .

VI. GENERAL DISCUSSION

The special properties of cross-entropy that hold for minimum

cross-entropy densities [111 result in a pattern classification method with

several advantages: It is optimal in a well-defined, information-theoretic

sense; it is computationally attractive; and it includes a self-consistent,

19



simple method of computing the set of cluster centroids in terms of which the

classification is made. A special case of this method (speech coding by

vector quantization) has already proved to be successful. It therefore seems

likely that the method can be used successfully in a variety of other

applications.
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